The use of **FATE*** for illuminating disruptions

(*Futures Assessed alongside socio-Technical Evolutions)

NATO 14th OR&A Conference

October 2020

G Adlakha-Hutcheon[#], K. Bown, A Lindberg, TG Nielsen, S Roemer and JF Maltby

Dr. Gitanjali Adlakha-Hutcheon Chair, NATO Research Task Group SAS-123 Defence R&D Canada

Outline

- FATE The method
- Two STS in two different operations
- *FATE* is unique because
- FATE invites exploitation

When was the last time you formally addressed a client's question on a technology from the perspective of a holistic system? One that looks at drivers and resistors of a socio-technical system that may impact the evolution of a technology?

- FATE does this !
- How?

The idea:

FATE – a means to conduct:

A concurrent assessment of **socio-technical** systems within imagined future scenarios

DRDCIRDDC

Excursion: Socio-technical transitions

The FATE Method

A problem – scope it as a Socio-Technical System (STS)

Step 1 – Socio-Technical System (STS)

Elaborate STS in to Niche, Regime and Landscape levels keeping the OPPPTI* ontology in mind

Step 2 – Future scenario

Adapt a scenario into *TEMPLES*[#] if required

Step 3 – Interactions between future scenario and STS

3.1 How do you see the STS evolving?

3.2 How do you see the STS in the described future scenarios?

<u>Output:</u> personal, group insights, drivers and resisters (D and R) for scenarios from baseline STS in relation to *TEMPLES* derived from future Scenarios

Step 4 – Relevance for Defence and Security

Assess the impact on defence and security e.g. wrt capabilities

Output: Impact mitigation options for client questions from at least two scenarios

[#] TEMPLES – Technological, Economical, Military, Political, Legal, Environmental and Social * OPPPTI – Organization, People, Processes, Policies, Technology, Infrastructure

**Futuristic STS derived from the changes in STS upon interaction with future scenario(s)

DRDCIRDDC

***Insights from analysis, changes in STS, drivers and resistors of change in context of future scenarios

FATE – in action with examples

Step 1 – Socio-Technical System (STS)

Elaborate STS in to the Multilayer Perspective

- Niche, Regime and when needed Landscape levels, and then into
- OPPPTI ontology

(OPPPTI - Organization, People, Processes, Policies, Technology, Infrastructure)

Two STS examples:

- What is the impact of delivery to How could 'wearables' effect urban front lines by autonomous means? operations?
- Traditional operations,

CIRDDC

- Automated delivery adds a contemporary flavor,
- Reducing number of soldiers in harms way.

- Urban operations,
- Contemporary equipment used to collect data facilitating near real time decision making,
- Minimizing risks for both soldiers and civilians.

Examples of Two STS

 Delivery to front lines by autonomous means

DRDCIRDDC

How could wearables effect urban operations?

Step 2 - Future scenarios

- FATE uses pre-described states of the world ("scenarios")
- Scenario characteristics are explored using the TEMPLES (Technological, Economical, Military, Political, Legal, Environmental and Social) scheme
- Example used for future scenarios are Future worldsTM (FW)
 - FW differentiated along 3 axes:
 - Global power dynamics
 - State control
 - Resource sustainment
 - FW4 and FW5 are an example for a pair of future worlds with pronounced differences for each of the 3 axes

Step 2 – Characteristics of FW4 and FW5

TEMPLES	Future World 4	Future World 5			
Technological	-Innovation is driven by the military sector. Positive drivers for technological growth pervasive presence in main aspects of life (transport, work, networking)	-Technology is flourishing and is favoured by deep innovation			
Economical	-Large industry prevails, with strong push from military requirements. It is able to mass-produce anything but without the agility to respond to quick changes	-Industry is mainly small, agile and distributed. It cannot flood the market as an organised, large-scale industry can but can capture and respond to the rapid changes of the landscape			
Military	-Called to operate in multiple contested domain with multipurpose assets	-Armed forces are present mainly for resolving small-scale sub-regional hot spots without the need for global intervention			
Political	-Fragmented world, strong regionalism. -Strong control through extensive global intelligence. -Large regional powers in contrast	-Strong global cohesion . -The UN is the main governing body for resolving disputes and procuring funds. -Numerous lobbyist entities with contrasting interests			
Legal	-Lack of standards	-Standards that are well supported			
Environmental	-Resources are scarce	-Resources are abundant			
Social	-Sharp inequalities in income and satisfaction , strongly dependent on the social group of belonging. There is no peaceful coexistence across mixed societies. - Media outlets are varied and heterogeneous.	 Income is satisfactory for everyone and there are no sharp inequalities ranging across social groups. Societies are cohesive and supportive. Media outlets are homogeneous. 			

Step 3 – Interactions between STS and future scenario(s)

_	Future World	Technological	Economical	Military	Political	Legal	Environmental	Social			
	Socio Teo	cio Technical System									
·	INTERAC Effectors	TIONS of change ider	ntified in anal	ysis of STS and	future scenario		O Drivers (D)	Resistors (R)Neutral			
	Land- scape	•••	•				\bullet	•••			
		Organisatio	n	People	Processes	Тес	chnologies	Infrastructure			
	Regime										
	Niche							!!! Insights			
	RDCIA										

Steps 4 – Relevance for Defence and Security (D&S)

Impact assessed using the following questions:

- Do the changes in *Future* STS impact Defence and Security (D&S) capabilities? Does something impact everything or just specific capabilities/ area of a capability?
 - I. Assess the potential for impact (Y/N)
 - II. Assess the probability of impact coming true (high/Low)
 - III. Assess the "level of regret" (A, B, C, D)
- 2. What are the Drivers and Resistors of changes?
- 3. Are impacts from *Future STS* coupled in different scenarios?

Facilitates development of Insights & Options for Mitigation of Impact

Identifying Drivers, Resistors & Impacts for clients

Scenario	FW 4	FW 5
Drivers	 Fractured world Need for better defence regionally 	 Standardization Innovation Interconnectivity Global industry
Resistors	 Isolationism (only countries with resources are able to develop autonomous solutions for last mile) Regime level bullets regarding standards, data-driven logistics Integration possible on a global/multi-actor environment 	 Global stability discourages military innovation Immature technologies
Impacts	High impact Weak infrastructure Transient networks Each to their own	High impact New vulnerabilities in infrastructure Distributed networks Commercial + ethical issues

Multiple ways to consider the impact characteristics

Disruption Calculus = Game changing ability to respond Regret = Using emotion to aid assessment

Time = earliest and latest it could occur

Regret Provides a more *emotive*, and thus often a better assessment.

IRDDC

Impact visualized in terms of a Calculus of Change

Game Changing

Can

.Respond

.Cannot.

Are impacts from STS coupled in different scenarios?

Unintended Consequences of *not* using a FATE like method

1. Electronic Health Records

- Problematic data entry/retrieval
- End-user resistance
- Complexity
- Physical space for PCs etc.

2. Mobile phones and healthcare in India and China

- Correlation between mobile phone use and healthcare access
- During illness, individual phone usage increases (eg to access online diagnosis etc)
- Increases burden on, and access to, healthcare professionals and facilities

Examples of Tools Complementary to FATE

Lewin's Force Field Analysis

CADMID cycle

 Concept, Assessment, Demonstration, Manufacture, In-Service, Disposal/Termination

TEPIDOIL

 Training, Equipment, Personnel, Information, Doctrine, Organisation, Infrastructure, Logistics (DOTMPLF(I) in US (NATO))

FATE is unique because it takes

- 1. A multi-disciplinary examination of transitions of technologies (emerging or potentially disruptive) in the form of an STS
- 2. An understanding of complex interactions that enable transitions
- 3. An awareness of Drivers and Resisters
- 4. Also provides opportunities for *FATE*-lite (modular form)
- All above in the context of Defence and Security
- All facilitate our understanding of how disruptions may occur, how to plan for them, how not to have regret....

.....and thus *FATE* provides an anticipatory answer

FATE would be even better if....

- ... it had a broader user base (i.e. not just defence),
- ... it was used in combination with other tools

DRDC | RDDC

SCIENCE, TECHNOLOGY AND KNOWLEDGE FOR CANADA'S DEFENCE AND SECURITY SCIENCE, TECHNOLOGIE ET SAVOIR POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA

